Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 593, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803263

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) are important for the acceleration of crop improvement through knowledge of marker-trait association (MTA). This report used DArT SNP markers to successfully perform GWAS on agro-morphological traits using 270 bambara groundnut [Vigna subterranea (L.) Verdc.] landraces sourced from diverse origins. The study aimed to identify marker traits association for nine agronomic traits using GWAS and their candidate genes. The experiment was conducted at two different locations laid out in alpha lattice design. The cowpea [Vigna unguiculata (L.) Walp.] reference genome (i.e. legume genome most closely related to bambara groundnut) assisted in the identification of candidate genes. RESULTS: The analyses showed that linkage disequilibrium was found to decay rapidly with an average genetic distance of 148 kb. The broadsense heritability was relatively high and ranged from 48.39% (terminal leaf length) to 79.39% (number of pods per plant). The GWAS identified a total of 27 significant marker-trait associations (MTAs) for the nine studied traits explaining 5.27% to 24.86% of phenotypic variations. Among studied traits, the highest number of MTAs was obtained from seed coat colour (6) followed by days to flowering (5), while the least is days to maturity (1), explaining 5.76% to 11.03%, 14.5% to 19.49%, and 11.66% phenotypic variations, respectively. Also, a total of 17 candidate genes were identified, varying in number for different traits; seed coat colour (6), days to flowering (3), terminal leaf length (2), terminal leaf width (2), number of seed per pod (2), pod width (1) and days to maturity (1). CONCLUSION: These results revealed the prospect of GWAS in identification of SNP variations associated with agronomic traits in bambara groundnut. Also, its present new opportunity to explore GWAS and marker assisted strategies in breeding of bambara groundnut for acceleration of the crop improvement.


Assuntos
Fabaceae , Vigna , Vigna/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Fabaceae/genética , Fenótipo
2.
Genes (Basel) ; 14(6)2023 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-37372356

RESUMO

Quantitative Trait Loci (QTL) mapping has been thoroughly used in peanut genetics and breeding in spite of the narrow genetic diversity and the segmental tetraploid nature of the cultivated species. QTL mapping is helpful for identifying the genomic regions that contribute to traits, for estimating the extent of variation and the genetic action (i.e., additive, dominant, or epistatic) underlying this variation, and for pinpointing genetic correlations between traits. The aim of this paper is to review the recently published studies on QTL mapping with a particular emphasis on mapping populations used as well as traits related to kernel quality. We found that several populations have been used for QTL mapping including interspecific populations developed from crosses between synthetic tetraploids and elite varieties. Those populations allowed the broadening of the genetic base of cultivated peanut and helped with the mapping of QTL and identifying beneficial wild alleles for economically important traits. Furthermore, only a few studies reported QTL related to kernel quality. The main quality traits for which QTL have been mapped include oil and protein content as well as fatty acid compositions. QTL for other agronomic traits have also been reported. Among the 1261 QTL reported in this review, and extracted from the most relevant studies on QTL mapping in peanut, 413 (~33%) were related to kernel quality showing the importance of quality in peanut genetics and breeding. Exploiting the QTL information could accelerate breeding to develop highly nutritious superior cultivars in the face of climate change.


Assuntos
Arachis , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Arachis/genética , Mapeamento Cromossômico , Melhoramento Vegetal , Fenótipo
3.
PLoS One ; 16(7): e0253600, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34197522

RESUMO

Understanding the genetic structure and diversity of crops facilitates progress in plant breeding. A collection of 270 bambara groundnut (Vigna subterrenea L) landraces sourced from different geographical regions (Nigeria/Cameroon, West, Central, Southern and East Africa) and unknown origin (sourced from United Kingdom) was used to assess genetic diversity, relationship and population structure using DArT SNP markers. The major allele frequency ranged from 0.57 for unknown origin to 0.91 for West Africa region. The total gene diversity (0.482) and Shannon diversity index (0.787) was higher in West African accessions. The genetic distance between pairs of regions varied from 0.002 to 0.028 with higher similarity between Nigeria/Cameroon-West Africa accessions and East-Southern Africa accessions. The analysis of molecular variance (AMOVA) revealed 89% of genetic variation within population, 8% among regions and 3% among population. The genetic relatedness among the collections was evaluated using neighbor joining tree analysis, which grouped all the geographic regions into three major clusters. Three major subgroups of bambara groundnut were identified using the ADMIXTURE model program and confirmed by discriminant analysis of principal components (DAPC). These subgroups were West Africa, Nigeria/Cameroon and unknown origin that gave rise to sub-population one, and Central Africa was sub-population two, while Southern and East Africa were sub-population three. In general, the results of all the different analytical methods used in this study confirmed the existence of high level of diversity among the germplasm used in this study that might be utilized for future genetic improvement of bambara groundnut. The finding also provides new insight on the population structure of African bambara groundnut germplasm which will help in conservation strategy and management of the crop.


Assuntos
Domesticação , Melhoramento Vegetal , Sementes/genética , Vigna/genética , África , Marcadores Genéticos , Variação Genética , Geografia , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...